Introducing the MPEG-H Audio Alliance’s New Interactive and Immersive TV Audio System

Presentation at AES 137th Convention, Los Angeles
Robert Bleidt – October, 2014

Based on the new MPEG-H Audio Open International Standard
ISO/IEC23008-3
MPEG-H Audio improves the listening experience

- The newest audio codec from MPEG expands the features of today’s codecs:
 - Personalize the sound to what you want to hear
 - Make surround sound more realistic
 - Tailor reproduction to your listening environment and hardware

- And the technical stuff:
 - One stream to every device
 - Combine multiple streams for hybrid delivery
 - Audio I-Frames for easy DASH segmentation
 - Unsurpassed coding efficiency
MPEG-H Audio improves the listening experience

Personalize the sound to what you want to hear
MPEG-H Audio improves the listening experience
Personalize the sound to what you want to hear

- In addition to traditional channel-based audio, MPEG-H includes audio objects, sound elements that are transmitted separately to the decoder.
- This allows the listener to adjust the elements to his liking.
- Examples:
 - Simple case: Adjust the dialogue or commentary level in relation to the other audio elements such as ambient sound, music, or sound effects.
 - Precursor 2011 Wimbledon “Grunt Controller” trials with BBC showed most listeners preferred either a higher or lower dialog level.
 - Helpful for listeners with hearing loss or non-primary language or dialect.
 - Additional language support becomes a simple matter of an additional 20-40 kb/s object.
First practical use of objects: Dialogue Enhancement
Allows viewers to set their own Dialogue levels

- User benefit
 - Dialogue/Announcer can be adjusted up or down
 - Helps hearing impaired understand Dialogue
 - Helps for listening in noisy environment

- Broadcaster benefit
 - One signal broadcast to all viewers
 - Default mix played by existing receivers

- Public test by BBC during the Tennis Grand Slam Championships 2011 in Wimbledon

- Now undergoing standardization in DVB
MPEG-H Audio improves the listening experience
Personalize the sound to what you want to hear

- More complex examples:
 - 2014 Field Test with leading U.S. sports network at winter sports event
 - Pick your announcer and language
 - Want to hear more sound effects? More audience sounds?
- Demo content from NASCAR race
 - Pick your announcer and language
 - Mix in driver’s radio
 - Hear car sounds/transducers
- Real-time decoding and rendering
- User selects audio mix from on-screen display sliders or preset buttons
How we Used Objects in our Field Test Mix

- **Nuendo Tracks**
 - 11.1 Bus with audience and ambience
 - 7.1 – Middle Layer
 - 4.0 – Height Layer
 - 5.0 Bus – L,C,R,UL, UR – Sound Effects
 - Mono Track – Network Announcer
 - Mono Track – Venue Announcer
 - Mono Track – Norwegian Announcer

- **Transmitted Bitstream**
 - Channel Bed 11.1 3D
 - Sound Effects Object 5.0
 - Network Commentary Object 1.0
 - Venue Commentary Object 1.0
 - Norwegian Commentary Object 1.0

- **Viewer’s Decoder**
 - Rendering
 - 7.1 + 4H Speakers

Here we chose to use a 5.0 object since we wanted console automation support for panning. Otherwise we could have used a mono or stereo dynamic object, saving 100 kb/s

Total Bitrate 448 kb/s
MPEG-H Audio improves the listening experience
Personalize the sound to what you want to hear

- Summary: Personalization
- Audio objects allow listeners to:
 - Adjust elements in the sound mix to their liking
 - Boost dialogue for hearing-impaired or second language listeners
 - Listen to alternate audio content such as:
 - Home vs away team commentary
 - Driver to crew race audio
 - Alternate languages, simultaneous translation, or audio description
 - Many other future creative and revenue opportunities
MPEG-H Audio improves the listening experience

Making surround sound more realistic
MPEG-H Audio improves the listening experience
Making surround sound more realistic

- 3D audio systems add height information (more channels or audio objects) to the sound field to improve realism
- It becomes difficult for the listener to perceive he is hearing a recording
- Our studies show adding **four height speakers** provides a substantial improvement without the 22 speakers of classical 3D systems
MPEG-H Audio improves the listening experience
Making surround sound more realistic

- MPEG-H currently has defined speaker configurations from 1.0 (mono) to 22.2
 - Bitstream support for up to 128 channels and 128 objects
- Our recommendation for 3D sound:
 - 7.1 Blu-ray surround configuration
 - 4 Height Speakers above corner speakers as shown
- Other configurations are possible, for example:
 - 5.1 + 4H
 - Using front wide 7.1 configuration or 9.1
MPEG-H Audio improves the listening experience
Making surround sound more realistic

- MPEG-H includes sound field capture technology for alternative means of capturing and reproducing 3D sound
- Based on Higher-Order Ambisonics techniques
- Transmits predominant sounds and ambience in separate tracks, independent of speaker format
- Allows one-microphone capture of sound field or ambience
- As with channel-based system, may be combined with audio objects for interactivity or personalization
Recommended Vertical Viewing Angles Increase with 4K

<table>
<thead>
<tr>
<th>System</th>
<th>1920 x 1080</th>
<th>3840 x 2160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing distance (relative to picture height)</td>
<td>3.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Viewing angle - horizontal (degrees)</td>
<td>31</td>
<td>58</td>
</tr>
<tr>
<td>Viewing angle - vertical (degrees)</td>
<td>18</td>
<td>35</td>
</tr>
</tbody>
</table>

- 1.6 PH viewing is recommended for 4K (BT.2022)
- (though consumers may be able to initially afford/accept only 2 PH)
- Setup note: 2 PH ~= screen diagonal, 65” away from 65” TV
“The average consumer will never hear 3D, they listen to stereo today”

- It is true today’s consumers listen mainly on stereo in-TV speakers or with simple 2.0 or 2.1 soundbars
- 5.1 or 7.1 AVR + speaker systems aren’t seen as the logical match for that new sleek, slim flat-panel TV
- So why do 3D audio if most of the audience won’t hear it?
 - The same reason we do surround today – the high-value viewers will have 3D in their home theaters
- Right?
Fraunhofer demonstrates future 3D listening for mainstream consumers with prototype “3D Sound Bar”

- Concept demonstration of our vision of mass consumer delivery of 3D audio
- Décor-friendly – no external wires or speakers
- No confusing AVR setup menus – unbox, hang on wall, enjoy
- Could be integrated into TV or offered as a separate frame
- Dramatic improvement over today’s stereo soundbars
- Home theater enthusiasts will still want 11.1 speakers (or more) for ultimate sound quality
- Shown at the Fraunhofer IIS booth at NAB 2014, IBC 2014
MPEG-H Audio improves the listening experience
Making surround sound more realistic

Summary: 3D Audio

3D provides a substantial increase in sound quality beyond surround sound

Four height speakers provide a good tradeoff between cost and sound quality

“3D sound bar” technology could be built into TVs or soundbars to enable a dramatic improvement in sound quality and immersive sound for the mainstream consumer

Higher Order Ambisonics offers an alternative method of capturing and transmitting 3D sound
MPEG-H Audio improves the listening experience
Tailor reproduction to your listening environment and hardware

- Multi-platform loudness control
 - Loudness measurement built into the encoder
 - Or use external values
 - Uses existing Dolby metadata in legacy mode
 - Adjustment of dynamic range to match listening environment and device capabilities

- Examples:
 - Home listening on good speakers
 - Listening on earbuds at airport on mobile phone
 - Listening at home on tablet
MPEG-H Audio improves the listening experience
Tailor reproduction to your listening environment and hardware

- Speaker-foolproof rendering for legacy speakers
 - May be able to correct for misplaced speakers in consumer’s home
 - HDMI 2.0 will allow communication of consumer’s installed speaker locations
 - May offer a limited impression of height on existing 5.1 or 2.0 consumer speakers

- Binaural rendering for headphone reproduction
 - Listener perceives sound stage in front of him, instead of between his ears
 - May be extended to tablet speakers with Fraunhofer Cingo technology
MPEG-H Audio improves the listening experience

The Technical Stuff

A Brief introduction to some selected MPEG-H concepts and features
MPEG-H offers the best coding efficiency available today

- Includes a highly efficient new audio codec to enable true 3D Audio transmission in broadcasting and streaming:

<table>
<thead>
<tr>
<th>Bitrates in kb/s for:</th>
<th>Good</th>
<th>Recommended</th>
<th>Transparent</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2 Channels</td>
<td>256</td>
<td>512</td>
<td>1200</td>
</tr>
<tr>
<td>7.1 + 4 Height Channels + 4 Objects</td>
<td>200</td>
<td>384</td>
<td>800</td>
</tr>
<tr>
<td>5.1 Channels</td>
<td>96</td>
<td>160</td>
<td>256</td>
</tr>
<tr>
<td>2.0 Channels</td>
<td>32</td>
<td>56</td>
<td>160</td>
</tr>
</tbody>
</table>

- Includes the unified Fraunhofer/VoiceAge improved speech codec and new spatial coding techniques
 - Better speech quality at low bitrates
 - Improved stereo and multichannel imaging
 - Improved coding efficiency
Combining streams in the decoder

- In MPEG-H, objects may be delivered over disparate networks and supplied to the decoder separately.
- Enables broadcast TV delivery of main content, with alternative or auxiliary content delivery over the Internet, for example.
- Effectively, late binding in the MPEG-H decoder.
Implementing MPEG-H in TV Broadcasting

Easy four-stage process as individual broadcasters desire
Developing a TV Audio System Based on MPEG-H

- The MPEG-H Audio Alliance is developing a practical TV audio system based on the MPEG-H standard.
- Includes not just audio coding, but a complete end-to-end system for content production, transmission and consumer delivery.
- We propose a four-stage process for implementation by broadcasters:
 - From the start, consumer decoders will support all features of our system.
 - Broadcasters can choose what features to use and when to implement them.
Stage 1 – today’s surround with current practices

- Replace AC-3 encoders with MPEG-H encoders
- (likely simultaneous with replacing MPEG-2 video encoders with HEVC or SHVC)
- Benefits:
 - Same audio quality with half the bitrate of AC-3
 - Similar operational practices using traditional loudness dialnorm and compressor profiles of AC-3
 - Automatic loudness profiles generated for mobile or tablet delivery
Stage 2 –
Add objects for consumer choice of audio elements

- Primary language dialogue (for Dialogue Enhancement – consumer adjustment of dialogue level)
- Second or third language dialogue
- Audio Description / Visually Impaired
- Home vs. Away team announcer
- Driver – Pit Crew radio
- Athlete’s playlist?
- Sound Effects
- Mono objects require at 20-40 kb/s each
- Objects can be programmed individually or in presets or groups
- Requires additional channels in TV plant for objects
Stage 3 – Adding Immersive Sound

- Add practical immersive audio – perhaps 5.1 or 7.1 + 4 height channels
- Increasing the realism of the audio image to create the “you’re in the scene or at the event” experience.
- May use Channels-based or HOA-based immersive sound bed + audio objects
- Requires four additional audio channels in TV plant for height channels
- System supports audio up to 128 channels, configurations to 22.2 defined in standard.
Stage 4 – Adding Dynamic Objects

- Dynamic Objects – change position over time as specified by control data in bitstream
- Interesting not only for feature film or episodic drama, but for effects in sports broadcasting and other genres
- Requires transmission of control data through broadcast plant to final emission encoder
 - We’ll have a future paper on that…
Progress with MPEG-H continues

- MPEG Standard at DIS stage
 - Final International Standard expected in January
- Being considered for upcoming ATSC 3.0 and DVB TV standards
- Pioneering experiments in sports broadcasting and other media to test production with MPEG-H’s new features
- Visit the Fraunhofer’s AES listening room on the show floor to learn more: Booth 1509
- Or go to www.iis.fraunhofer.de/tvaudio or www.mpeghaa.com
Fraunhofer, Qualcomm, and Technicolor
Bring MPEG-H to the world’s media and devices

- **Fraunhofer**
 - Developer of AAC and MP3 standards, deployed in 7 billion devices each.
 - 15 years of TV audio experience, providing half the world’s TV surround sound. Used by broadcasters such as the BBC, TV Globo, and NHK.
 - Developer of open-source FDK library – the surround sound codec of Android

- **Qualcomm**
 - Provider of comprehensive mobile chipset solutions for all types of smart connected devices, including powerful multi-media platform capabilities
 - Supplier to all major mobile OEMs
 - Strong multi-media design expertise, with major contributions to audio and video standardization

- **Technicolor**
 - Largest Post-Production Sound facilities in the world
 - Close ties to content Creators and Distributors in Hollywood
 - Co-developer and co-licensor of the MP3 format with Fraunhofer
 - Major presence in home delivery equipment (set-top boxes) and services