IMMERSIVE AUDIO WITH MPEG-H 3D AUDIO
STATUS AND OUTLOOK

Max Neuendorf, Jan Plogsties, Stefan Meltzer
Fraunhofer Institute for Integrated Circuits (IIS), Erlangen, Germany
NAB Booth: SU 6117

Robert Bleidt
Fraunhofer USA Digital Media Technologies, San Jose, California

NAB Show 2014, Broadcast Engineering Conference
Advanced Technologies for Television (Part 2)
Sunday, April 6, 2014
MPEG-H 3D AUDIO

- Challenges of a changing TV Landscape
 - Everywhere, Personalization, Immersiveness
- MPEG-H 3D Audio System
 - Codec
 - Renderers
 - Postprocessing
 - Transport
- Timeline
Challenges of Future TV

- Users have changing expectations from the TV sound system
 - Watching films on tablets and mobile devices, not just home TV
 - Interactive aspect expected also from films and TV
 - In the living room: Convenient unobtrusive (audio) products, sometimes at the cost of quality. E.g. soundbars.

- Success of future TV will depend on how well it can compete with new media
Challenges of Future TV

What value can a future TV audio system add to future broadcast programs?

- **Everywhere**: Play on any device
 - Mobile over headphones, tablets, to home theatre with cinematic sound

- **Personalization** and Interactivity
 - System that adapts to user’s situation
 - Flexible sound rendering, dynamic range control, adjust and modify certain audio and sound elements

- **Immersiveness**
 - Compelling sound experience through sound that comes from all directions
Changing TV Landscape - Everywhere

- One content plays on all devices with delivering best possible sound experience

3D Audio Content
Changing TV Landscape - **Personalization**

- Adapt to user’s situation

- Adjustment of the loudness and dynamic range based on the listening situation (home vs. mobile)

- Adjustment to the user’s loudspeaker configuration through flexible rendering
 - Misplaced speakers
 - More channels than loudspeakers etc.
Changing TV Landscape - Personalization

- Set the audio mix based on your personal preference
- Adjustment of dialogue level
- Adjustment of voice over level
- Changing the sound stage (home – away team commentary)
Changing TV Landscape - **Personalization**

- Support of multiple languages
- Selection between original and translation during a simultaneous translation
- Additional optional audio elements
 (Select the team radio of your preferred driver during a car race)
Changing TV Landscape - **Immersiveness**

- **Additional height component**
- **Substantially improved sound experience**
- **3D sound even on headphones through "binaural" rendering**
- **Make user’s perception believe she is listening to a 3D sound field**

![Graph showing comparison of sound quality](image_url)
Expectations to a Future TV Audio Systems

- Play on all target devices
- Allow user interactivity to tailor experience to user’s liking
- Offer compelling audio experience to the user

- Flexible rendering from headphones to home cinema
- Audio objects allow user control over selection, loudness, panning of individual audio elements
- New immersive sound experience with height loudspeakers
THE MPEG-H 3D AUDIO SYSTEM
How Does MPEG-H Address these Requirements?
MPEG-H Audio Core Codec

- Unsurpassed coding efficiency based on AAC evolution plus new technologies
 - Better speech quality at low bitrates
 - Improved stereo and multichannel imaging
 - Improved coding efficiency
- Additional channels or objects needed for 3D sound can be transmitted at bit rates similar to those used today for 5.1 surround broadcasts.

<table>
<thead>
<tr>
<th>Bitrates in kb/s for:</th>
<th>Good</th>
<th>Recommended</th>
<th>Transparent</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2 Channels</td>
<td>256</td>
<td>512</td>
<td>1200</td>
</tr>
<tr>
<td>7.1 + 4 Height Channels + 4 Objects</td>
<td>200</td>
<td>384</td>
<td>800</td>
</tr>
<tr>
<td>5.1 Channels</td>
<td>96</td>
<td>160</td>
<td>256</td>
</tr>
<tr>
<td>2.0 Channels</td>
<td>32</td>
<td>56</td>
<td>160</td>
</tr>
</tbody>
</table>
Format Converter / Channel Rendering

- Handles loudspeaker channel signals
- traditional channel based content
- “channel-bed” of 3D scenes
- Flexible Rendering to target loudspeaker layout

Retains **immersiveness** as best as possible with the available loudspeakers

- Acts like an intelligent downmix
- Compensates timbre coloration / signal cancellation effects

Rendering may include psychoacoustic processing to render the impression of height without height speakers, for legacy 5.1 or 2.0 consumers

- Downmix can be controlled by broadcasters if desired
- Bypassed if target loudspeaker layout is same as content layout
MPEG-H is Speaker-Foolproof

- Flexible Rendering is capable of rendering from any source layout to any target layout
- Compensates misplaced loudspeaker positions
- Best quality playback on any configuration:
 - Stereo
 - 5.1
 - Headphones
 - Sound Frame
 - Full home theater 5.1 up to 22.2
Object Renderer: What is an object?

- Audio object is basically a channel that can be positioned or panned during playback
- Think of transmitting mixer channels or stems instead of final outputs
 - And sending pan-pot settings as well
- Objects can be moved during playback to track action in the video
- Rendering under the viewer’s control:
 - Adjust volume of objects, or turn on/off, or perhaps adjust position
- Objects can be combined with traditional channels
Object Renderer

- Renders objects to best match the loudspeaker configuration available in your personal listening situation
- Object channel is played over a combination of those loudspeakers that are closest to the intended object position
- Like a dynamically positioned phantom speaker
- Retains the intended perceived direction of an object
First Practical Use of Objects: Dialog Enhancement
Allows viewers to set their own dialog level

- **User Personalization**
 - Dialog/Announcer can be adjusted up or down
 - Helps hearing impaired understand dialog
 - Helps for listening in noisy environment

- Public test by BBC during the Tennis Grand Slam Championships 2011 in Wimbledon
- Now undergoing standardization in DVB
Other Use Cases for Objects

- Dialog in multiple languages
 - objects may be switched on or off depending on desired languages
- Audio from particular players, actors, or points of view
- Descriptive audio for visually impaired viewers
- Home team announcer vs. away team announcer at sporting event
Future Example of Objects – Football Game
Higher Order Ambisonics (HOA) Renderer

- Loudspeaker-independent, universal, representation of a sound field
- Particularly useful for live recordings
- Captures full sound scene by using multi-capsule microphone array
- Or: synthesize HOA signals from channels/object based material
- Can be directly rendered to target loudspeaker layout to achieve optimal Immersiveness
Dynamic Range Control, Loudness Normalization

- DRC allows adaptation to user’s listening situation
 - Home cinema → high dynamic range
 - Mobile / airplane / late-night → low dynamic range
- Can be multi-band
- Additional DRC processing blocks in each rendering path (omitted in overview graph)
- Loudness normalization to comply to CALM
- Optional peak limiter follows loudness normalization
Binaural Rendering

- Optional post-processing step for listening on headphones
- Causes "externalization" of sound – no in-head sensation
- Applies "Binaural Room Impulse Responses" (BRIR) to Mixer output signals
- Gives sound sensation "as if" listening to loudspeakers in a certain room
- Great for getting 3D sound **immersion** from mobile devices
Aspects of Delivery / Transmission

- DASH support for stutter-free streaming
- New “audio I-frame”:
 - easy DASH bit stream switching between any configurations
 - easy splicing for Ad insertion
- Object Priority
 - Dialog maintained as object
 - Other objects mixed into bed or grouped object for mobile bandwidth reduction
Aspects of Delivery / Transmission

- Common codec allows object transmission over disparate networks with combination in MPEG-H decoder
 - Internet
 - ATSC 3.0 fixed
 - ATSC 3.0 Mobile
 - 4G and 5G wireless
MPEG Timeline

- ISO "Committee Draft" issued two days ago, available for review next Friday
- "Draft International Standard" in July → freeze status
- "International Standard" expected in February 2015
Fraunhofer's Interactive 3D Audio System for TV BC

- Come to booth SU6117
- Experience a real 3D Audio system with technology preview of a 3D Audio soundbar
- Discuss
 - Audio for Next Generation Broadcasting tomorrow, Monday, 3pm S227
- Visit
 - www.iis.fraunhofer.de/tvaudio